. R A ] 1 8 Se p 20 06 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
نویسنده
چکیده
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generalization of k-Gorenstein modules, and characterize it in terms of some similar properties of kGorenstein modules.
منابع مشابه
9 S ep 2 00 4 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملWakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کامل1 0 Se p 20 04 k - Gorenstein Modules ∗ †
Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then establish the left-right symmetry of the notion of k-Gorenstein modules, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. ...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کامل